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Abstract: - A matrix embedding code was developed as a commonly used steganographic technique in 

which a parity-check matrix is used to perform embedding. However, a drawback of high decoding 

complexity for linear block codes by using the maximum-likelihood algorithm is unrealistic. This 

paper proposes a simple and effective trellis embedding scheme for binary messages. Compared with 

a matrix embedding algorithm that uses linear block codes, the proposed scheme is more appropriate 

for embedding messages in the case of linear block codes with a long length. The proposed algorithm 

uses time-varying convolutional codes as the embedding method and yields a favorable structure of 

time-varying convolutional codes for steganography. The proposed method employs maximum-

likelihood decoding based on trellis construction to identify the coset leader of convolutional codes 

for large payloads. The experimental results show that the embedding efficiency of the proposed 

scheme is substantially superior to that of the scheme using linear block codes. 
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1 Introduction 
As public network communication progresses 

increasingly, a large amount of data must be 

transmitted using numerous reliable approaches, 

one of which is steganography. The main 

requirements for a steganographic scheme are 

security and embedding efficiency. Embedding 

efficiency directly influences security; thus, 

steganography emphasizes its embedding 

efficiency. To obtain high security in 

communication, the embedding efficiency must 

be high; in other words, the average number of 

embedded bits per change is low. One effective 

steganographic technique involves using matrix 

embedding (ME) codes [1],[4]. Constructing 

structured codes with an embedding efficiency 

close to the theoretical bound is a crucial open 

problem that entails two concerns. First, 

embedding schemes require structured codes of 

a sufficiently long length that possess an 

excellent parity-check matrix or generator 

matrix. Second, structured codes are more 

computationally efficient, and efficient 

encoding and decoding procedures are 

developed on the basis of structured codes. 

   Through coding theory, linear block codes 

provide a general approach to improving 

embedding efficiency in steganography. This 

technique was first proposed by Crandall [2] 

and Bierbrauer [3] in early 1998. Long low-

density generator-matrix (LDGM) embedding 

codes [5] with iterative decoding based on the 

bias propagation algorithm have been presented. 

In addition to LDGM embedding codes, 

constructed codes with a fast decoding 

algorithm have been developed [6],[7],[8], and 

Filler, Judas, and Fridrich [9] proposed a 

practical embedding scheme using syndrome-

trellis codes (STCs), which are represented in a 

dual domain of convolutional codes. The 

method is employed to perform embedding 

procedures by using a trellis structure based on 

a parity-check matrix rather than a generator 

matrix. This study developed a new trellis-

based embedding scheme in which the 

complexity is of linear time and space for 

steganography. This paper proposes an 

embedding technique designated as the time-

varying convolutional codes because it is 

developed on the basis of a convolutional code. 

In contrast to the ME codes, the time-varying 

convolutional codes are embedded with a time-

WSEAS TRANSACTIONS on SIGNAL PROCESSING Chi-Yuan Lin, Jyun-Jie Wang

E-ISSN: 2224-3488 186 Volume 11, 2015



varying trellis structure and then decoded using 

a Viterbi algorithm, one of the maximum-

likelihood (ML) algorithms. Because a trellis 

structure is a time variant, the decoding 

complexity varies linearly, not exponentially as 

in the ML approach, with linear blocks when 

the Viterbi algorithm is performed.  

   The remainder of this paper is organized as 

follows: Section 2 briefly discusses the theory 

limit of binary data hiding and quantization for 

linear codes. The major work on the proposed 

optimal time-varying convolutional embedding 

codes algorithm is described in Section 3, and 

Section 4 provides experimental results and 

constructive discussions. Finally, Section 5 

concludes this paper. 

 

 

2 Performance of Linear Codes  
The goal of the binary embedding scheme is to 

quantize a source subject to a theoretical bound 

on the amount of distortion. Fig. 1 illustrates an 

embedding model and extracting model.  

 

 
Fig. 1  Embedding model and extracting model. 

 

Under the assumption that a logo  0,1
m

s  

embedded into a cover  0,1
n

u  is transmitted 

to the receiver, then the optimal stego 

' optl u e   is provided by an embedder; that is, 

a message ,l  modified from u , corresponding 

to the syndrome s . Given an optimal toggle 

,opte  a symmetric Bernoulli source adds to it 

some cover ,u  that is, optl u e   . Even though 

the embedder knows the cover ,u  it cannot 

simply cancel this known interference because 

of the constraint on the average number of 1’s, 

which cannot exceed ,n where 0 1/ 2  . 

In this study, the optimal or minimum quantized 

error was defined as ( , ),opt He d l u  where 

( )Hd   denotes a Hamming distance between a 

setgo l and cover .u  The rate-distortion 

function ( ) 1 ( )R h    is requested to be 

achieved, where  denotes the bound of 

average distortion and 

2 2( ) log (1/ ) (1 ) log (1 (1 ))h d d d d d    

denotes a binary entropy function, by an ( , )n k  

linear code C  with a code rate 

/ ( ).cR k n R    Theoretically, the codeword 

of a linear code C  can be regarded as a 

quantized message set ˆ{ },C u  with   as the 

average distance between an arbitrary cover set 

U an upper bound of the embedding capacity is 

then determined as 

[ ( , )]
max ( | ) ( ).

E d C U n
h C U h





               (1) 

 

   In case a well-designed linear code exists, the 

aforementioned theoretical upper bound can be 

approached using an associated embedder. For 

any 0 1/ 2,   0  , and sufficiently high 

,n  there exists an ( , )n k  embedding code of 

rate ( )cR R    that satisfies 

1 1
ˆ[ ( , )] [ ( )] . (2)optE d u u E w e

n n
     

 

The remaining major concern entails seeking a 

parity-check matrix with a well-behaved ( , )n k  

linear code and a code rate / .cR k n  

Furthermore, with an embedding rate requested 

in such a linear code ,C  the aforementioned 

equation can then be rewritten as 

( ) 1 / / . (3)h k n m n     

 

Because ( ), 2mm nh   cosets are employed 

to reach aforementioned .mR  Given an 

embedding rate for an ( , )n k  embedding code, 

the minimum average distortion is up to 
1 1( / ) ( ) (4)mh m n h R     

where  1h   is the inverse function of the 

binary entropy function .h   

For a symmetric Bernoulli source and a 

source sequence of n  bits, the average 

quantization distortion per bit is defined as 
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ˆ[ ( , )]
(5)H

avg

E d u uD
d

n n
   

 

where D  is the average Hamming distortion 

between a quantized codeword û C  and 

arbitrary vector .u  The lower bound   of each 

bit average distortion in blocks can be written 

as .avgd   When the binary data embedding 

of a sequence of length n  bits is performed, the 

embedding efficiency is defined as 

(6)
.

m

ave

R m

d D
    

 

For such a linear code ,C  the embedding 

efficiency between both the efficiency bound 

and ML-detected algorithms can be related as 

1

1
( ) (7)

,( )
opt m

m

m
D nh R

nh R
 


    

 

where optD  represents the distortion level 

estimated in the ML-detected algorithms.  

For a given min( , , )n k   linear block code 

C  with an embedding rate ( ) / ,mR n k n   

the packing radius of spheres is obtained using 

min 1
.

(8)2
t

  
  
 

 

 

Using (8), the number of Voronoi set 0E  of 

linear block codes can be divided as  

22 ( , ) ( , ), (9)mnR
V n t n t   

 

where 2 0( , ) ( )t n
i iV n t    and ( , )n t  are the 

Hamming spheres of radius t  and residue 

without the Hamming sphere ).,(2 tnV  

Furthermore, the covering radius R  of linear 

block codes was defined as 

(10)         Δ (u,c)   dminmaxt H
CcFu

R n
2 

 

 

An all-zero codeword in C  was adopted to 

show that spheres for some various radii exist. 

Fig. 2 illustrates the spheres. 

 
Fig. 2  Covering radius for block codes. 

 

By applying information theory, the inequality 

of the spheres can be obtained using 
( / )

2 22 ( , ) 2 ( , ) (11)mR nRnh t n
tV n R V n t    

 

; that is, 

2 2 2 2log ( , ) log ( , )
( / ) . (12)t

R m

V n R V n t
h t n R

n n
    

 

Finally, the precise upper and lower bounds 

were obtained using 

2 2 2 2log ( , ) log ( , )
,

(13)

t
m

V n R V n t
R

n n
   

 

where ),(2 RtnV is the Hamming sphere of radius 

Rt . Using (13) divided by the average changes 

of embedding 
avgd  to determines the bound of 

embedding efficiency as 

2 2 2 2log ( , ) log ( , )
.

(14)

t

avg avg

V n R V n t

d n d n
   

 

For a linear block code with sufficiently long 

length, avgd  is difficult to obtain. However, the 

average changes of embedding of sphere 

2 ( , )V n t  and 2 ( , )RV n t  can be effortless 

determined. To efficiently measure the 

embedding efficiency for a certain linear block 

code ,C  a more precise efficiency bound for a 

sufficiently long linear block code is necessary. 

Subsequently, a realistic measure bound of 

embedding efficiency is introduced. 
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The average embedding changes ,avgD  the 

changes of embedding per n -bit block, by 

using linear block codes .C  are discussed. A 

linear embedded code C  can control the 

number of error bits between t  and .Rt  Upon 

finding all the ( )n
t  sequences in the Voronoi set 

0E  of coset leader, the rest are of the weight 

between t  and .Rt  However, such weight of set 

( , )n t  is assumed to be difficult to obtain in 

this study. The average changes of embedding 

within the Voronoi set 0E  is bounded as 

follows:  

 0 0( ) 2 ( )
.

2

t n m t n
i i i i

opt m

i
D

  

 

             (15) 

 

The average sequence distortion of either 

optimal decoding, or ML decoding, of any 

linear code is not lower than .optD
 
Assume tD  

and 
Rt

D  are the average changes of embedding 

corresponding to sphere 2 ( , )V n t  and 

2 ( , ).RV n t  For a sphere of radius ,t  the 

average density of sphere is expressed as 
' '

'

0 0

( ) / ( ). (16)
t t

n n
t i i

i i

D i
 

   

 

The average changes of embedding within 0E  

are written as follows: 

, (17)
Rt opt tD D D   

 

where optD
 
is the average changes per block 

for the matrix embedding scheme using the ML 

decoding strategy. For a matrix embedding, 

optD  is approached using a ( , )n k  linear code 

with the ML decoding strategy. For the 

statistical embedding changes per block, the 

embedded logo vector ,l  derived from ,ls  is 

uniformly picked and then the toggle vector x  

is obtained by cover u subtracting .l In addition, 

the expected number [ ( )]optE w e of embedding 

changes is uniformly distributed within m
qF  

with respect to the number of coset leaders of 

various weights. In other words, the toggle x  is 

uniform in each coset and the coset leader, 

obtained using ( )T
opte f Hx . Finally, the 

average embedding changes per block are 

expressed as 

1
0 ,

1
0 ,

[ ( ( ))]

( ( ))

( )

( )
. (18)

n
q

m

m

T
avg opt H

T
Hx F

n

q k
i H opt i

n

q
i H opt i

m

D D E w f Hx

w f Hx

q

w e q

q

w e

q









 










 

 

Finally, inverse (16) and multiply by mR  as 

( ) ( ). (19)

R

m m
low up

t t

R R

D D
     

 

 

3  Optimal Quantizing by Using Time-

Varying Convolutional Codes  
 

 

3.1. Quantizing by using convolutional codes 

As shown in Fig. 3, a module operation 

performs the quantization of an arbitrary vector 

2
nu F  by a linear block code .C   

 
Fig. 3  u  Mod C  operation. 

 

This section details the quantization under 

the condition that ,lC  the coset of the code ,C  

replaces C  here. Considering a coset lC  of C  
with a corresponding syndrome ,ls  an arbitrary 

cover vector ,lu C  is then quantized by .lC  
It is intended to locate ,ll C  the vector 

closest to u , and the minimal error between l  

and u  is represented as  
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mod

mod ( )

mod

( ). (20)

l

opt

l

T

e u C

u l C l

x C

f Hx



  





 

    

In case l  is the coset leader within lC , the 

linear code C  is obtained using the sum of the 

coset leader l  and ,lC  the solution to the 

equation 1 ,ll H s  but in most cases, the 

coset leader is not required, which can be 

instead determined using an arbitrary vector 

defined in .lC  Ultimately, opte  is obtained by 

performing a decoding function.  

An arbitrary host vector 2
u nu C F   exists 

within the coset .uC  The vector is referred to 

as the logo vector, a known binary vector
 ls

 
of 

length n k  bits that is intended for 

embedding. The coset leader 2
x n

opte C F   

must be located within a set ,xC  closest to ,u  

with logo vector ,ls  discovered. The syndrome 

xs  is then determined using ( ) ,TH l u  where 
1 .ll H s  From the perspective of 

quantization, the coset leader opte  can be 

discovered through a module operation, 

expressed as 

 mod  

 mod  

 mod  . (21)

l
opte u C

l u C

x C



 



 

 

Suppose that a sequence xx C  exists that 

satisfies ,xs Hx  and represents a coset xC  of 

the code .C  x  with the minimal weighting is 

intended to be sought; that is, ,opte  which is 

expressed as  

argmin ( , ). (22)opt H
c C

e x d c x


   

Once discovered, the coset leader x
opte C  is 

added to the host as u  , ' optl u e   . Essentially, 

2' l nl C F   is the sequence closest to the 

sequence u  within 2
nF  dimensional space and 

contains the logo sequence ls . 

Finally, the secret message ls  is extracted as
 

( )T
ls H l

 
at the receiver, according to the 

aforementioned embedding procedures and then 

presented as the following algorithm: 

==================================

================================== 

Algorithm Optimal embedding algorithm: 

----------------------------------------------------------

---------------------------------------------------------- 

Encoder: Given a symbol ls  and a host vector 

,u  a vector ,l  closet to the vector u  
corresponding to the syndrome ls ,

 
is located as 

follows: 

1. In syndrome domain, derived from ,ls  the 

vector l  in ,lC  is added to us  to obtain .xs  

2. The vector x  is then decoded using the ML 

algorithm into a codeword c  as follows: 
ˆ argmin ( , ).c Cc d c x  

and adding x  to ĉ  yields .opte   

3. Or, to solve the linear equations, x xH s  

yields .opte   

4. The output l  is obtained by adding opte
 
to 

.u   

' optl u e   

Decoder: Recover the logo ls
 
by y  and .H  

(i.e., the embedded data is then extracted by 

performing 

'ls Hl ) 

==================================

==================================

A notation must be defined to describe the 

embedding of a convolutional code-based 

algorithm. Assume that a convolutional code is 

a nonsystematic generator matrix, which can 

translate into a systematic generator matrix by 

using elementary row operations. Alternatively, 

the convolutional code can be reached in a 

systematic recursive form. In this study, a 

convolutional code was used to embed the 

binary message as follows: 

A convolutional code   with a generator 

matrix ( )G D  is defined as 

 ( ) ( ) ( ) , (23)c D v D G D    
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where information sequence is 
2( ) ( )kv D F D  

and codeword sequence is 2( ) ( ).nc D F D  The 

codeword ,)( Dc  is closest to a random 

binary sequence )(Du  with respect to the 

Hamming distance over a binary symmetric 

source. The convolutional code   was used to 

generate the minimum error sequence ( )ue D  

from a quantization perspective as follows: 

 
 

    

    
  









mod

,minarg

Du

DuQDu

DuDcdDe
Dc

u

    (24) 

 

where the ( ( ))Q x D  is a quantizer as follows: 

( ( )) '( ) , (25)Q u D c D   

 

( )c D   exists and 

( ( )) '( )) ( ( ) ( )). (26)H Hd u D c D d u D c D    

 

The nearest neighbor quantizer ( )Q   , which 

was interpreted as the minimal error vector 

( )ue D  in quantizing ( )u D  by   and ( )Q   , can 

be realized using the Viterbi algorithm for 

convolutional codes with a trellis structure. 

Finally, the Voronoi cell of   was defined as 

the set 

   0 ( ) ( ) : ( ( )) 0 . (27)optV e D u D Q u D    

 

Consider the use of algebraic for a coset code 

of a convolutional code. Assume a shifted coset 

code l  of a convolutional code   , where l  

is defined as the sum of   and a minimal error 

sequence ( )opte D  . Subsequently, by using l , 

an arbitrary binary sequence ( )u D  is quantized 

by coset code l  as 

  ( )mod

( ) ( )mod( ( ))

( )mod

( ) ( ( )), (28)

l
opt

l

e D u D

u D l D l D

x D

x D Q x D

 

   

 

 

 

 

where the shift sequence ( ) ll D   ; that is, 

( ) ( ) ( )optl D c D e D   and ( )opte D  denote the 

error sequence or coset leader sequence in 

quantizing toggle sequence ( )x D  by  . 

Assume that cover sequence ( )u D  is 

uniformly distributed in 2 ( )NF D ; subsequently, 

the toggle sequence ( )x D  , which is obtained by 

subtracting message sequence ( )l D  from cover 

sequence ( )u D  , is also uniformly distributed. 

The minimal distance sequence ( )opte D  between 

cover sequence ( )u D  and message sequence l  

is equal to (30). By quantizing a random binary 

sequence ( )x D  by l  , an average quantized 

distortion level is represented as 

[ ( ( ) ( ( )))]

[ ( ( ))]. (29)

avg

opt

D E w x D Q x D

E w e D




 

 

Similar to the linear block codes, the optimal 

toggle vector must be determined. The task can 

be performed using systematic convolutional 

codes. A simpler method relative to the 

systematic coding approach is message 

embedding by using linear block codes 

requiring a coset vector l  associated with ls  . 

The method in which the toggle vector was 

obtained in a systematic block code binary 

embedding was applied to the systematic 

convolutional code binary embedding. The 

embedding procedure for systematic 

convolutional codes is presented as follows: 

With a message syndrome sequence ( )ls D  of 

length ( )cN nR  , determining the sequence  

( ) ll D   of length Nn  is necessary with the 

syndrome ls  as the linear codes. For a special 

( ,1)n  systematic convolutional code case, a 

generator matrix ( )sG D  , is defined as 

1 2( ) [1 ( ) ( )... ( )], (30)s mG D g D g D g D  

 

where 1m n   . The transposition of ( )G D  

yields 

1( ) 1 0 0

( ) 0 1 0 ,

( ) 1 (31)

s

m

g D

H D

g D

 
 


 
  

 

 

where ( )sH D  is a m n  matrix and embedded 

sequence 2( ) ( )m
ls D F D  is derived as 

( ) ( ) ( ). (32)T
s lH D l D s D  

 

It is necessary to solve 
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1( ) ( ( )) ( ) . (33)T T
s ll D H D s D  

In general, this equation is highly complex to 

solve. Because of the systematic encoder, 

( ) [0...0 ( )]ll D s D  of size 1 n  can be solved. 

In addition, the toggle sequence ( )x D  is 

obtained by ( )u D  subtraction to ( )l D . The 

embedder quantizes the arbitrary toggle 

sequence ( )x D  to generate the optimal stego 

sequence '( )l D  as 

'( ) ( ) ( ( ) mod  ( ))

( ) ( ( ) ( ( ))). (34)

l D u D x D D

u D x D Q x D

  

  
 

 

Finally, the sequence '( )l D , closest to the 

sequence ( )u D , corresponding to the syndrome 

( )ls D  is derived as 

'( ) ( ) ( ). (35)optl D u D e D   

 

At the receiver, the message sequence ( )ls D  is 

extracted as ( ) ( )( '( ))T
l ss D H D l D . 

The following example is based on a 

systematic convolutional code to illustrate the 

nested convolutional embedding algorithm and 

describe the embedding procedure. Consider an 

embedded message sequence [1,1,1,1,1]ls   and 

cover sequence [11,01,11,01,11]u  . Because the 

systematic convolutional codes, specified by 

parity-check matrix 2( ) [1 1]sH D D   , are 

used, the solution ( )l D  corresponding to 

( ) ( ) ( )s lH D l D s D  was easily obtained. 

Subsequently, a systematic convolutional code 

binary embedding was performed in the code 

domain. Under the assumption that 

1 2( , ,..., )l Ms l l l  is the symbol intended for 

embedding, the vector 1 2(0, ,0, ,...,0, )Ml l l l  

represents a sequence, that is, a (2,1)  systematic 

convolutional code with the syndrome ls . 

[0,1,0,1,0,1,0,1,0,1]l   and the toggle sequence x  

corresponding to xs  and within the coset xC can 

be easily obtained. 

[1,1,0,1,1,1,0,1,1,1] [0,1,0,1,0,1,0,1,0,1]

[1,0,0,0,1,0,0,0,1,0].

x u l 

 



 

 

The optimal toggle sequence ( )opte D  , 

corresponding to syndrome ( )xs D  , can be 

discovered by performing Viterbi decoding of 

( )x D  , as follows:  

( ) ( ) ( ( ))

[1,1,0,0,1,0,0,0,1,0] [1,0,0,0,1,0,0,0,1,0]

[0,1,0,0,0,0,0,0,0,0],

opte D x D Q x D 

 



 

where Viter ( )  is a Viterbi decoding function. 

The procedure for finding an optimal toggle 

sequence ( )opte D . Finally, the stego sequence 

was obtained using 

'( ) ( ) ( )

[11,01,11,01,11] [0,1,0,0,0,0,0,0,0,0]

[10,01,11,01,11].

optl D u D e D 

 



 

 

In the receiver, the message sequence ( )ls D  

was reconstructed as 

( ) ( ) '( )

1

0

0
11

1
00 11

1
10 00 11

1
10 00 11

0
10 00 11

1

1

1

[1,1,1,1,1] .

l s

T

s D H D l D

 
 
 
 

   
   
   
   
   
   
    

 
 
 
  



 

  A crucial factor of convolutional embedding 

codes is how the optimal generator matrix for 

large payloads is found. The subsequent section 

provides numerous optimal generator matrices 

by simulation. 

 

 

3.2. Optimal time-varying convolutional 

codes 

An algebraic construction for binary 

embedding scheme is presented as follows: The 

memory M parity-check matrix of a time-

varying, periodical, rate /R k n  binary 

convolutional code C  is the semi-infinite matrix 

expressed as 
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(0) (1) ( 1) ( )
0 1 1

(0) ( 2) ( 1)
1 1 ,                    (36)

M M
t t

T M M
t t

H H H H

H H H H




 


 
 

  
 
 
 

 

 

where ( ) , 0,1,..., ,  0,1,...m
tH m M t   are 

( )n n k   binary submatrices , (0)
tH  should 

have a full rank and ( ) ( )m m
t t TH H   for all t , 

and T  is the period of the code. Let 

[0, ] 0 1( , ,..., )n nu u u u  be a segment of an 

information sequence and 

[0, ] 0,1 0,2 1,1 1,2 ,1 ,2( , , , ,..., , ,)n n nv v v v v v v  be the 

corresponding segment of the encoded 

sequence, which satisfies the equation 

[0, ] [0, ] 0, 0,1, . (37)T
n nv H n    

 

Because (0)
1 ( ) 1h n   and (0)

2 ( ) 1h n  ,  

,1 (38)n nv u  

and 

( ) ( )
,2 1 ,1 2 ,2

0 0

( ) ( ) . (39)
M M

i i
n n i n i

i i

v h n u h n u 

 

    

 

The realization can be implemented as shown in 

Fig. 4. 

 
Fig. 4  Time-varying convolutional code 

encoder. 

 

  Generally, the rate /R k n  encoder can be 

implemented using n  length 1M   shift 

registers in parallel and time-varying 

connections from the register stages to the 

modulo 2 adders. The quantizer is used to 

generate the quantized error ue  from the module 

operation. Certainly, given a linear code C  , the 

codeword û C  is closest to a random binary 

sequence u  with respect to the Hamming 

distance over a symmetric Bernoulli source. 

The problem is formulated as follows: 

ˆ

( )

( )

ˆarg min ( , )

( ) , (40)

u u

T

u C

opt

e f s

f Hu

d u u u

Q u u







 

 

 

 

where ( )f   is a ML decoding function and 

( )optQ   denotes an optimal quantization function, 

which is generated using ML decoding of a 

linear block code. 

 

 

4  Simulation Results 
The simulation was performed to address the 

problem of constructing a (2,1)  favorable time-

varying convolutional embedding family of 

codes with Viterbi decoding. The method 

presented in Section 3 was used to embed the 

binary messages and compare embedding 

efficiency with other embedding algorithms, 

including time-invarying convolutional codes, 

BCH codes, simple codes, and Golay codes [4]. 

The following experiments were simulated on 

code length 2000N  : uniform logo sequence 

and cover sequence. To obtain the optimal 

embedding efficiency for time-varying 

convolutional codes, the parameter of the 

generator matrix of that was simulated using a 

computer, as shown in Table 1. Table 1 shows a 

comparison of parameters of generator matrix 

in memory 2,3,4m   for time-variant and time-

invariant convolutional codes. Table 1 presents 

the design of an optimal generator of time-

variant and time-invariant convolutional codes. 

The embedding efficiency of these optimal 

designs is illustrated in Fig. 5.  

Some families of block embedding codes as 

a function of the inverse embedding rate are 

shown in Fig. 5. In the embedding efficiency 

corresponding to the approximate inverse 

embedding rate, the time-varying convolutional 

embedding codes exhibited superior embedding 

efficiency, and the trend of a high inverse 

embedding rate was achieved. By using a full 

search, some optimal systematic time-varying 

convolutional embedding codes were found. 

The time-varying period was 2, as shown in 

Table 1 and Fig. 5. 
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Chi-Yuan Lin, Jyun-Jie Wang

E-ISSN: 2224-3488 193 Volume 11, 2015



5 Conclusion 
Proposed in this work is an alternative to a binary 

embedding algorithm, that is, time-varying 

convolutional embedding codes. In comparison with 

an ME codes, it demonstrates a double advantage of 

(i) being able to perform the ML decoding in the 

case of a sufficiently large code, i.e. a superior 

embedding efficiency and (ii) an easily alterable 

embedding rate to meet various application 

requirements. The proposed method renders an 

(2,1)  time-varying convolutional code and 

embedding rate up to 0.5mR   to perform an 

embedding task. A good source code built upon the 

time varying convolutional code structure will be 

addressed in the near future. 
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Fig. 5  Some optimal systematic time-varying convolutional embedding codes. 
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Table 1 The optimal generators of time-varying and time-invariant convolutional code with 

systematic form were found using a computer search (TI and TV denote time-invarying 

convolutional code and time-varying convolutional code, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 

Codes   

Period 

T  

Generator 

G  

 

Embedding 

efficiency 
  

TI (r=1/2,L=3) 1 [111] 2.98 

TI (r=1/2,L=4) 1 [1111] 3.25 

TI (r=1/2,L=5) 1 [10111] 3.47 

TI (r=1/3,L=3) 1 [110,101] 3.01 

TI (r=1/3,L=4) 1 [1011,1101] 3.23 

TI (r=1/3,L=5) 1 [10101,10011] 3.25 

TV(r=1/2,L=3) 2 [111][101] 3.21 

TV(r=1/2,L=4) 2 [1101][1111] 3.32 

TV(r=1/2,L=5) 2 [11011][11111] 3.52 

TV(r=1/3,L=3) 2 [111101][111011] 3.03 

TV(r=1/3,L=4) 2 [1111,1001][1101,1111] 3.22 

TV(r=1/3,L=5) 2 [11111,11011][11011,11101] 3.26 
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